Simple basis coordinates | Epsilon coordinates | Reflection w.r.t. root |
(-1, -1, -1, -1, -1, -1, -1, -1) | -e_{1}+e_{9} | \(s_{1}s_{2}s_{3}s_{4}s_{5}s_{6}s_{7}s_{8}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}\) |
(0, -1, -1, -1, -1, -1, -1, -1) | -e_{2}+e_{9} | \(s_{2}s_{3}s_{4}s_{5}s_{6}s_{7}s_{8}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}\) |
(-1, -1, -1, -1, -1, -1, -1, 0) | -e_{1}+e_{8} | \(s_{1}s_{2}s_{3}s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}\) |
(0, 0, -1, -1, -1, -1, -1, -1) | -e_{3}+e_{9} | \(s_{3}s_{4}s_{5}s_{6}s_{7}s_{8}s_{7}s_{6}s_{5}s_{4}s_{3}\) |
(0, -1, -1, -1, -1, -1, -1, 0) | -e_{2}+e_{8} | \(s_{2}s_{3}s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}\) |
(-1, -1, -1, -1, -1, -1, 0, 0) | -e_{1}+e_{7} | \(s_{1}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}\) |
(0, 0, 0, -1, -1, -1, -1, -1) | -e_{4}+e_{9} | \(s_{4}s_{5}s_{6}s_{7}s_{8}s_{7}s_{6}s_{5}s_{4}\) |
(0, 0, -1, -1, -1, -1, -1, 0) | -e_{3}+e_{8} | \(s_{3}s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}s_{3}\) |
(0, -1, -1, -1, -1, -1, 0, 0) | -e_{2}+e_{7} | \(s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{3}s_{2}\) |
(-1, -1, -1, -1, -1, 0, 0, 0) | -e_{1}+e_{6} | \(s_{1}s_{2}s_{3}s_{4}s_{5}s_{4}s_{3}s_{2}s_{1}\) |
(0, 0, 0, 0, -1, -1, -1, -1) | -e_{5}+e_{9} | \(s_{5}s_{6}s_{7}s_{8}s_{7}s_{6}s_{5}\) |
(0, 0, 0, -1, -1, -1, -1, 0) | -e_{4}+e_{8} | \(s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}\) |
(0, 0, -1, -1, -1, -1, 0, 0) | -e_{3}+e_{7} | \(s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{3}\) |
(0, -1, -1, -1, -1, 0, 0, 0) | -e_{2}+e_{6} | \(s_{2}s_{3}s_{4}s_{5}s_{4}s_{3}s_{2}\) |
(-1, -1, -1, -1, 0, 0, 0, 0) | -e_{1}+e_{5} | \(s_{1}s_{2}s_{3}s_{4}s_{3}s_{2}s_{1}\) |
(0, 0, 0, 0, 0, -1, -1, -1) | -e_{6}+e_{9} | \(s_{6}s_{7}s_{8}s_{7}s_{6}\) |
(0, 0, 0, 0, -1, -1, -1, 0) | -e_{5}+e_{8} | \(s_{5}s_{6}s_{7}s_{6}s_{5}\) |
(0, 0, 0, -1, -1, -1, 0, 0) | -e_{4}+e_{7} | \(s_{4}s_{5}s_{6}s_{5}s_{4}\) |
(0, 0, -1, -1, -1, 0, 0, 0) | -e_{3}+e_{6} | \(s_{3}s_{4}s_{5}s_{4}s_{3}\) |
(0, -1, -1, -1, 0, 0, 0, 0) | -e_{2}+e_{5} | \(s_{2}s_{3}s_{4}s_{3}s_{2}\) |
(-1, -1, -1, 0, 0, 0, 0, 0) | -e_{1}+e_{4} | \(s_{1}s_{2}s_{3}s_{2}s_{1}\) |
(0, 0, 0, 0, 0, 0, -1, -1) | -e_{7}+e_{9} | \(s_{7}s_{8}s_{7}\) |
(0, 0, 0, 0, 0, -1, -1, 0) | -e_{6}+e_{8} | \(s_{6}s_{7}s_{6}\) |
(0, 0, 0, 0, -1, -1, 0, 0) | -e_{5}+e_{7} | \(s_{5}s_{6}s_{5}\) |
(0, 0, 0, -1, -1, 0, 0, 0) | -e_{4}+e_{6} | \(s_{4}s_{5}s_{4}\) |
(0, 0, -1, -1, 0, 0, 0, 0) | -e_{3}+e_{5} | \(s_{3}s_{4}s_{3}\) |
(0, -1, -1, 0, 0, 0, 0, 0) | -e_{2}+e_{4} | \(s_{2}s_{3}s_{2}\) |
(-1, -1, 0, 0, 0, 0, 0, 0) | -e_{1}+e_{3} | \(s_{1}s_{2}s_{1}\) |
(0, 0, 0, 0, 0, 0, 0, -1) | -e_{8}+e_{9} | \(s_{8}\) |
(0, 0, 0, 0, 0, 0, -1, 0) | -e_{7}+e_{8} | \(s_{7}\) |
(0, 0, 0, 0, 0, -1, 0, 0) | -e_{6}+e_{7} | \(s_{6}\) |
(0, 0, 0, 0, -1, 0, 0, 0) | -e_{5}+e_{6} | \(s_{5}\) |
(0, 0, 0, -1, 0, 0, 0, 0) | -e_{4}+e_{5} | \(s_{4}\) |
(0, 0, -1, 0, 0, 0, 0, 0) | -e_{3}+e_{4} | \(s_{3}\) |
(0, -1, 0, 0, 0, 0, 0, 0) | -e_{2}+e_{3} | \(s_{2}\) |
(-1, 0, 0, 0, 0, 0, 0, 0) | -e_{1}+e_{2} | \(s_{1}\) |
(1, 0, 0, 0, 0, 0, 0, 0) | e_{1}-e_{2} | \(s_{1}\) |
(0, 1, 0, 0, 0, 0, 0, 0) | e_{2}-e_{3} | \(s_{2}\) |
(0, 0, 1, 0, 0, 0, 0, 0) | e_{3}-e_{4} | \(s_{3}\) |
(0, 0, 0, 1, 0, 0, 0, 0) | e_{4}-e_{5} | \(s_{4}\) |
(0, 0, 0, 0, 1, 0, 0, 0) | e_{5}-e_{6} | \(s_{5}\) |
(0, 0, 0, 0, 0, 1, 0, 0) | e_{6}-e_{7} | \(s_{6}\) |
(0, 0, 0, 0, 0, 0, 1, 0) | e_{7}-e_{8} | \(s_{7}\) |
(0, 0, 0, 0, 0, 0, 0, 1) | e_{8}-e_{9} | \(s_{8}\) |
(1, 1, 0, 0, 0, 0, 0, 0) | e_{1}-e_{3} | \(s_{1}s_{2}s_{1}\) |
(0, 1, 1, 0, 0, 0, 0, 0) | e_{2}-e_{4} | \(s_{2}s_{3}s_{2}\) |
(0, 0, 1, 1, 0, 0, 0, 0) | e_{3}-e_{5} | \(s_{3}s_{4}s_{3}\) |
(0, 0, 0, 1, 1, 0, 0, 0) | e_{4}-e_{6} | \(s_{4}s_{5}s_{4}\) |
(0, 0, 0, 0, 1, 1, 0, 0) | e_{5}-e_{7} | \(s_{5}s_{6}s_{5}\) |
(0, 0, 0, 0, 0, 1, 1, 0) | e_{6}-e_{8} | \(s_{6}s_{7}s_{6}\) |
(0, 0, 0, 0, 0, 0, 1, 1) | e_{7}-e_{9} | \(s_{7}s_{8}s_{7}\) |
(1, 1, 1, 0, 0, 0, 0, 0) | e_{1}-e_{4} | \(s_{1}s_{2}s_{3}s_{2}s_{1}\) |
(0, 1, 1, 1, 0, 0, 0, 0) | e_{2}-e_{5} | \(s_{2}s_{3}s_{4}s_{3}s_{2}\) |
(0, 0, 1, 1, 1, 0, 0, 0) | e_{3}-e_{6} | \(s_{3}s_{4}s_{5}s_{4}s_{3}\) |
(0, 0, 0, 1, 1, 1, 0, 0) | e_{4}-e_{7} | \(s_{4}s_{5}s_{6}s_{5}s_{4}\) |
(0, 0, 0, 0, 1, 1, 1, 0) | e_{5}-e_{8} | \(s_{5}s_{6}s_{7}s_{6}s_{5}\) |
(0, 0, 0, 0, 0, 1, 1, 1) | e_{6}-e_{9} | \(s_{6}s_{7}s_{8}s_{7}s_{6}\) |
(1, 1, 1, 1, 0, 0, 0, 0) | e_{1}-e_{5} | \(s_{1}s_{2}s_{3}s_{4}s_{3}s_{2}s_{1}\) |
(0, 1, 1, 1, 1, 0, 0, 0) | e_{2}-e_{6} | \(s_{2}s_{3}s_{4}s_{5}s_{4}s_{3}s_{2}\) |
(0, 0, 1, 1, 1, 1, 0, 0) | e_{3}-e_{7} | \(s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{3}\) |
(0, 0, 0, 1, 1, 1, 1, 0) | e_{4}-e_{8} | \(s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}\) |
(0, 0, 0, 0, 1, 1, 1, 1) | e_{5}-e_{9} | \(s_{5}s_{6}s_{7}s_{8}s_{7}s_{6}s_{5}\) |
(1, 1, 1, 1, 1, 0, 0, 0) | e_{1}-e_{6} | \(s_{1}s_{2}s_{3}s_{4}s_{5}s_{4}s_{3}s_{2}s_{1}\) |
(0, 1, 1, 1, 1, 1, 0, 0) | e_{2}-e_{7} | \(s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{3}s_{2}\) |
(0, 0, 1, 1, 1, 1, 1, 0) | e_{3}-e_{8} | \(s_{3}s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}s_{3}\) |
(0, 0, 0, 1, 1, 1, 1, 1) | e_{4}-e_{9} | \(s_{4}s_{5}s_{6}s_{7}s_{8}s_{7}s_{6}s_{5}s_{4}\) |
(1, 1, 1, 1, 1, 1, 0, 0) | e_{1}-e_{7} | \(s_{1}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}\) |
(0, 1, 1, 1, 1, 1, 1, 0) | e_{2}-e_{8} | \(s_{2}s_{3}s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}\) |
(0, 0, 1, 1, 1, 1, 1, 1) | e_{3}-e_{9} | \(s_{3}s_{4}s_{5}s_{6}s_{7}s_{8}s_{7}s_{6}s_{5}s_{4}s_{3}\) |
(1, 1, 1, 1, 1, 1, 1, 0) | e_{1}-e_{8} | \(s_{1}s_{2}s_{3}s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}\) |
(0, 1, 1, 1, 1, 1, 1, 1) | e_{2}-e_{9} | \(s_{2}s_{3}s_{4}s_{5}s_{6}s_{7}s_{8}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}\) |
(1, 1, 1, 1, 1, 1, 1, 1) | e_{1}-e_{9} | \(s_{1}s_{2}s_{3}s_{4}s_{5}s_{6}s_{7}s_{8}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}\) |
Comma delimited list of roots: (-1, -1, -1, -1, -1, -1, -1, -1), (0, -1, -1, -1, -1, -1, -1, -1), (-1, -1, -1, -1, -1, -1, -1, 0), (0, 0, -1, -1, -1, -1, -1, -1), (0, -1, -1, -1, -1, -1, -1, 0), (-1, -1, -1, -1, -1, -1, 0, 0), (0, 0, 0, -1, -1, -1, -1, -1), (0, 0, -1, -1, -1, -1, -1, 0), (0, -1, -1, -1, -1, -1, 0, 0), (-1, -1, -1, -1, -1, 0, 0, 0), (0, 0, 0, 0, -1, -1, -1, -1), (0, 0, 0, -1, -1, -1, -1, 0), (0, 0, -1, -1, -1, -1, 0, 0), (0, -1, -1, -1, -1, 0, 0, 0), (-1, -1, -1, -1, 0, 0, 0, 0), (0, 0, 0, 0, 0, -1, -1, -1), (0, 0, 0, 0, -1, -1, -1, 0), (0, 0, 0, -1, -1, -1, 0, 0), (0, 0, -1, -1, -1, 0, 0, 0), (0, -1, -1, -1, 0, 0, 0, 0), (-1, -1, -1, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, -1, -1), (0, 0, 0, 0, 0, -1, -1, 0), (0, 0, 0, 0, -1, -1, 0, 0), (0, 0, 0, -1, -1, 0, 0, 0), (0, 0, -1, -1, 0, 0, 0, 0), (0, -1, -1, 0, 0, 0, 0, 0), (-1, -1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, -1), (0, 0, 0, 0, 0, 0, -1, 0), (0, 0, 0, 0, 0, -1, 0, 0), (0, 0, 0, 0, -1, 0, 0, 0), (0, 0, 0, -1, 0, 0, 0, 0), (0, 0, -1, 0, 0, 0, 0, 0), (0, -1, 0, 0, 0, 0, 0, 0), (-1, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1), (1, 1, 0, 0, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0, 0, 0), (0, 0, 0, 1, 1, 0, 0, 0), (0, 0, 0, 0, 1, 1, 0, 0), (0, 0, 0, 0, 0, 1, 1, 0), (0, 0, 0, 0, 0, 0, 1, 1), (1, 1, 1, 0, 0, 0, 0, 0), (0, 1, 1, 1, 0, 0, 0, 0), (0, 0, 1, 1, 1, 0, 0, 0), (0, 0, 0, 1, 1, 1, 0, 0), (0, 0, 0, 0, 1, 1, 1, 0), (0, 0, 0, 0, 0, 1, 1, 1), (1, 1, 1, 1, 0, 0, 0, 0), (0, 1, 1, 1, 1, 0, 0, 0), (0, 0, 1, 1, 1, 1, 0, 0), (0, 0, 0, 1, 1, 1, 1, 0), (0, 0, 0, 0, 1, 1, 1, 1), (1, 1, 1, 1, 1, 0, 0, 0), (0, 1, 1, 1, 1, 1, 0, 0), (0, 0, 1, 1, 1, 1, 1, 0), (0, 0, 0, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 0, 0), (0, 1, 1, 1, 1, 1, 1, 0), (0, 0, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1, 0), (0, 1, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1, 1) The resulting Lie bracket pairing table follows. roots simple coords | epsilon coordinates | [,] | g_{-36} | g_{-35} | g_{-34} | g_{-33} | g_{-32} | g_{-31} | g_{-30} | g_{-29} | g_{-28} | g_{-27} | g_{-26} | g_{-25} | g_{-24} | g_{-23} | g_{-22} | g_{-21} | g_{-20} | g_{-19} | g_{-18} | g_{-17} | g_{-16} | g_{-15} | g_{-14} | g_{-13} | g_{-12} | g_{-11} | g_{-10} | g_{-9} | g_{-8} | g_{-7} | g_{-6} | g_{-5} | g_{-4} | g_{-3} | g_{-2} | g_{-1} | h_{1} | h_{2} | h_{3} | h_{4} | h_{5} | h_{6} | h_{7} | h_{8} | g_{1} | g_{2} | g_{3} | g_{4} | g_{5} | g_{6} | g_{7} | g_{8} | g_{9} | g_{10} | g_{11} | g_{12} | g_{13} | g_{14} | g_{15} | g_{16} | g_{17} | g_{18} | g_{19} | g_{20} | g_{21} | g_{22} | g_{23} | g_{24} | g_{25} | g_{26} | g_{27} | g_{28} | g_{29} | g_{30} | g_{31} | g_{32} | g_{33} | g_{34} | g_{35} | g_{36} |
(-1, -1, -1, -1, -1, -1, -1, -1) | -e_{1}+e_{9} | g_{-36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-36} | 0 | 0 | 0 | 0 | 0 | 0 | g_{-36} | g_{-35} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-34} | g_{-33} | 0 | 0 | 0 | 0 | 0 | -g_{-31} | g_{-30} | 0 | 0 | 0 | 0 | -g_{-27} | g_{-26} | 0 | 0 | 0 | -g_{-22} | g_{-21} | 0 | 0 | -g_{-16} | g_{-15} | 0 | -g_{-9} | g_{-8} | -g_{-1} | -h_{8}-h_{7}-h_{6}-h_{5}-h_{4}-h_{3}-h_{2}-h_{1} |
(0, -1, -1, -1, -1, -1, -1, -1) | -e_{2}+e_{9} | g_{-35} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-36} | -g_{-35} | g_{-35} | 0 | 0 | 0 | 0 | 0 | g_{-35} | 0 | g_{-33} | 0 | 0 | 0 | 0 | 0 | -g_{-32} | 0 | g_{-30} | 0 | 0 | 0 | 0 | -g_{-28} | 0 | g_{-26} | 0 | 0 | 0 | -g_{-23} | 0 | g_{-21} | 0 | 0 | -g_{-17} | 0 | g_{-15} | 0 | -g_{-10} | 0 | g_{-8} | -g_{-2} | 0 | -h_{8}-h_{7}-h_{6}-h_{5}-h_{4}-h_{3}-h_{2} | -g_{1} |
(-1, -1, -1, -1, -1, -1, -1, 0) | -e_{1}+e_{8} | g_{-34} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-34} | 0 | 0 | 0 | 0 | 0 | g_{-34} | -g_{-34} | g_{-32} | 0 | 0 | 0 | 0 | 0 | -g_{-31} | 0 | g_{-29} | 0 | 0 | 0 | 0 | -g_{-27} | 0 | g_{-25} | 0 | 0 | 0 | -g_{-22} | 0 | g_{-20} | 0 | 0 | -g_{-16} | 0 | g_{-14} | 0 | -g_{-9} | 0 | g_{-7} | -g_{-1} | 0 | -h_{7}-h_{6}-h_{5}-h_{4}-h_{3}-h_{2}-h_{1} | 0 | g_{8} |
(0, 0, -1, -1, -1, -1, -1, -1) | -e_{3}+e_{9} | g_{-33} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-36} | 0 | 0 | 0 | 0 | 0 | 0 | g_{-35} | 0 | 0 | -g_{-33} | g_{-33} | 0 | 0 | 0 | 0 | g_{-33} | 0 | 0 | g_{-30} | 0 | 0 | 0 | 0 | -g_{-29} | 0 | 0 | g_{-26} | 0 | 0 | 0 | -g_{-24} | 0 | 0 | g_{-21} | 0 | 0 | -g_{-18} | 0 | 0 | g_{-15} | 0 | -g_{-11} | 0 | 0 | g_{-8} | -g_{-3} | 0 | 0 | -h_{8}-h_{7}-h_{6}-h_{5}-h_{4}-h_{3} | 0 | -g_{2} | -g_{9} |
(0, -1, -1, -1, -1, -1, -1, 0) | -e_{2}+e_{8} | g_{-32} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-35} | 0 | 0 | 0 | 0 | 0 | 0 | g_{-34} | -g_{-32} | g_{-32} | 0 | 0 | 0 | 0 | g_{-32} | -g_{-32} | 0 | g_{-29} | 0 | 0 | 0 | 0 | -g_{-28} | 0 | 0 | g_{-25} | 0 | 0 | 0 | -g_{-23} | 0 | 0 | g_{-20} | 0 | 0 | -g_{-17} | 0 | 0 | g_{-14} | 0 | -g_{-10} | 0 | 0 | g_{-7} | -g_{-2} | 0 | 0 | -h_{7}-h_{6}-h_{5}-h_{4}-h_{3}-h_{2} | 0 | -g_{1} | g_{8} | 0 |
(-1, -1, -1, -1, -1, -1, 0, 0) | -e_{1}+e_{7} | g_{-31} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-34} | 0 | 0 | 0 | 0 | 0 | 0 | g_{-31} | 0 | 0 | 0 | 0 | g_{-31} | -g_{-31} | 0 | g_{-28} | 0 | 0 | 0 | 0 | -g_{-27} | 0 | 0 | g_{-24} | 0 | 0 | 0 | -g_{-22} | 0 | 0 | g_{-19} | 0 | 0 | -g_{-16} | 0 | 0 | g_{-13} | 0 | -g_{-9} | 0 | 0 | g_{-6} | -g_{-1} | 0 | 0 | -h_{6}-h_{5}-h_{4}-h_{3}-h_{2}-h_{1} | 0 | 0 | g_{7} | 0 | g_{15} |
(0, 0, 0, -1, -1, -1, -1, -1) | -e_{4}+e_{9} | g_{-30} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-36} | 0 | 0 | 0 | 0 | 0 | g_{-35} | 0 | 0 | 0 | 0 | 0 | 0 | g_{-33} | 0 | 0 | 0 | 0 | -g_{-30} | g_{-30} | 0 | 0 | 0 | g_{-30} | 0 | 0 | 0 | g_{-26} | 0 | 0 | 0 | -g_{-25} | 0 | 0 | 0 | g_{-21} | 0 | 0 | -g_{-19} | 0 | 0 | 0 | g_{-15} | 0 | -g_{-12} | 0 | 0 | 0 | g_{-8} | -g_{-4} | 0 | 0 | 0 | -h_{8}-h_{7}-h_{6}-h_{5}-h_{4} | 0 | 0 | -g_{3} | 0 | -g_{10} | -g_{16} |
(0, 0, -1, -1, -1, -1, -1, 0) | -e_{3}+e_{8} | g_{-29} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-34} | -g_{-33} | 0 | 0 | 0 | 0 | 0 | g_{-32} | 0 | 0 | -g_{-29} | g_{-29} | 0 | 0 | 0 | g_{-29} | -g_{-29} | 0 | 0 | g_{-25} | 0 | 0 | 0 | -g_{-24} | 0 | 0 | 0 | g_{-20} | 0 | 0 | -g_{-18} | 0 | 0 | 0 | g_{-14} | 0 | -g_{-11} | 0 | 0 | 0 | g_{-7} | -g_{-3} | 0 | 0 | 0 | -h_{7}-h_{6}-h_{5}-h_{4}-h_{3} | 0 | 0 | -g_{2} | g_{8} | -g_{9} | 0 | 0 |
(0, -1, -1, -1, -1, -1, 0, 0) | -e_{2}+e_{7} | g_{-28} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-35} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-32} | 0 | 0 | 0 | 0 | 0 | g_{-31} | -g_{-28} | g_{-28} | 0 | 0 | 0 | g_{-28} | -g_{-28} | 0 | 0 | g_{-24} | 0 | 0 | 0 | -g_{-23} | 0 | 0 | 0 | g_{-19} | 0 | 0 | -g_{-17} | 0 | 0 | 0 | g_{-13} | 0 | -g_{-10} | 0 | 0 | 0 | g_{-6} | -g_{-2} | 0 | 0 | 0 | -h_{6}-h_{5}-h_{4}-h_{3}-h_{2} | 0 | 0 | -g_{1} | g_{7} | 0 | 0 | g_{15} | 0 |
(-1, -1, -1, -1, -1, 0, 0, 0) | -e_{1}+e_{6} | g_{-27} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-36} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-34} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-31} | 0 | 0 | 0 | 0 | 0 | g_{-27} | 0 | 0 | 0 | g_{-27} | -g_{-27} | 0 | 0 | g_{-23} | 0 | 0 | 0 | -g_{-22} | 0 | 0 | 0 | g_{-18} | 0 | 0 | -g_{-16} | 0 | 0 | 0 | g_{-12} | 0 | -g_{-9} | 0 | 0 | 0 | g_{-5} | -g_{-1} | 0 | 0 | 0 | -h_{5}-h_{4}-h_{3}-h_{2}-h_{1} | 0 | 0 | 0 | g_{6} | 0 | 0 | g_{14} | 0 | g_{21} |
(0, 0, 0, 0, -1, -1, -1, -1) | -e_{5}+e_{9} | g_{-26} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-36} | 0 | 0 | 0 | 0 | g_{-35} | 0 | 0 | 0 | 0 | 0 | g_{-33} | 0 | 0 | 0 | 0 | 0 | 0 | g_{-30} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-26} | g_{-26} | 0 | 0 | g_{-26} | 0 | 0 | 0 | 0 | g_{-21} | 0 | 0 | -g_{-20} | 0 | 0 | 0 | 0 | g_{-15} | 0 | -g_{-13} | 0 | 0 | 0 | 0 | g_{-8} | -g_{-5} | 0 | 0 | 0 | 0 | -h_{8}-h_{7}-h_{6}-h_{5} | 0 | 0 | 0 | -g_{4} | 0 | 0 | -g_{11} | 0 | -g_{17} | -g_{22} |
(0, 0, 0, -1, -1, -1, -1, 0) | -e_{4}+e_{8} | g_{-25} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-34} | 0 | 0 | 0 | 0 | 0 | g_{-32} | 0 | -g_{-30} | 0 | 0 | 0 | 0 | g_{-29} | 0 | 0 | 0 | 0 | -g_{-25} | g_{-25} | 0 | 0 | g_{-25} | -g_{-25} | 0 | 0 | 0 | g_{-20} | 0 | 0 | -g_{-19} | 0 | 0 | 0 | 0 | g_{-14} | 0 | -g_{-12} | 0 | 0 | 0 | 0 | g_{-7} | -g_{-4} | 0 | 0 | 0 | 0 | -h_{7}-h_{6}-h_{5}-h_{4} | 0 | 0 | 0 | -g_{3} | g_{8} | 0 | -g_{10} | 0 | -g_{16} | 0 | 0 |
(0, 0, -1, -1, -1, -1, 0, 0) | -e_{3}+e_{7} | g_{-24} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-33} | 0 | 0 | 0 | 0 | 0 | g_{-31} | 0 | -g_{-29} | 0 | 0 | 0 | 0 | g_{-28} | 0 | 0 | -g_{-24} | g_{-24} | 0 | 0 | g_{-24} | -g_{-24} | 0 | 0 | 0 | g_{-19} | 0 | 0 | -g_{-18} | 0 | 0 | 0 | 0 | g_{-13} | 0 | -g_{-11} | 0 | 0 | 0 | 0 | g_{-6} | -g_{-3} | 0 | 0 | 0 | 0 | -h_{6}-h_{5}-h_{4}-h_{3} | 0 | 0 | 0 | -g_{2} | g_{7} | 0 | -g_{9} | 0 | g_{15} | 0 | 0 | 0 |
(0, -1, -1, -1, -1, 0, 0, 0) | -e_{2}+e_{6} | g_{-23} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-35} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-32} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-28} | 0 | 0 | 0 | 0 | g_{-27} | -g_{-23} | g_{-23} | 0 | 0 | g_{-23} | -g_{-23} | 0 | 0 | 0 | g_{-18} | 0 | 0 | -g_{-17} | 0 | 0 | 0 | 0 | g_{-12} | 0 | -g_{-10} | 0 | 0 | 0 | 0 | g_{-5} | -g_{-2} | 0 | 0 | 0 | 0 | -h_{5}-h_{4}-h_{3}-h_{2} | 0 | 0 | 0 | -g_{1} | g_{6} | 0 | 0 | 0 | g_{14} | 0 | 0 | g_{21} | 0 |
(-1, -1, -1, -1, 0, 0, 0, 0) | -e_{1}+e_{5} | g_{-22} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-36} | 0 | 0 | 0 | 0 | 0 | -g_{-34} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-31} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-27} | 0 | 0 | 0 | 0 | g_{-22} | 0 | 0 | g_{-22} | -g_{-22} | 0 | 0 | 0 | g_{-17} | 0 | 0 | -g_{-16} | 0 | 0 | 0 | 0 | g_{-11} | 0 | -g_{-9} | 0 | 0 | 0 | 0 | g_{-4} | -g_{-1} | 0 | 0 | 0 | 0 | -h_{4}-h_{3}-h_{2}-h_{1} | 0 | 0 | 0 | 0 | g_{5} | 0 | 0 | 0 | g_{13} | 0 | 0 | g_{20} | 0 | g_{26} |
(0, 0, 0, 0, 0, -1, -1, -1) | -e_{6}+e_{9} | g_{-21} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-36} | 0 | 0 | 0 | g_{-35} | 0 | 0 | 0 | 0 | g_{-33} | 0 | 0 | 0 | 0 | 0 | g_{-30} | 0 | 0 | 0 | 0 | 0 | 0 | g_{-26} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-21} | g_{-21} | 0 | g_{-21} | 0 | 0 | 0 | 0 | 0 | g_{-15} | 0 | -g_{-14} | 0 | 0 | 0 | 0 | 0 | g_{-8} | -g_{-6} | 0 | 0 | 0 | 0 | 0 | -h_{8}-h_{7}-h_{6} | 0 | 0 | 0 | 0 | -g_{5} | 0 | 0 | 0 | -g_{12} | 0 | 0 | -g_{18} | 0 | -g_{23} | -g_{27} |
(0, 0, 0, 0, -1, -1, -1, 0) | -e_{5}+e_{8} | g_{-20} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-34} | 0 | 0 | 0 | 0 | g_{-32} | 0 | 0 | 0 | 0 | 0 | g_{-29} | 0 | 0 | -g_{-26} | 0 | 0 | 0 | g_{-25} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-20} | g_{-20} | 0 | g_{-20} | -g_{-20} | 0 | 0 | 0 | 0 | g_{-14} | 0 | -g_{-13} | 0 | 0 | 0 | 0 | 0 | g_{-7} | -g_{-5} | 0 | 0 | 0 | 0 | 0 | -h_{7}-h_{6}-h_{5} | 0 | 0 | 0 | 0 | -g_{4} | g_{8} | 0 | 0 | -g_{11} | 0 | 0 | -g_{17} | 0 | -g_{22} | 0 | 0 |
(0, 0, 0, -1, -1, -1, 0, 0) | -e_{4}+e_{7} | g_{-19} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-31} | -g_{-30} | 0 | 0 | 0 | 0 | g_{-28} | 0 | 0 | -g_{-25} | 0 | 0 | 0 | g_{-24} | 0 | 0 | 0 | 0 | -g_{-19} | g_{-19} | 0 | g_{-19} | -g_{-19} | 0 | 0 | 0 | 0 | g_{-13} | 0 | -g_{-12} | 0 | 0 | 0 | 0 | 0 | g_{-6} | -g_{-4} | 0 | 0 | 0 | 0 | 0 | -h_{6}-h_{5}-h_{4} | 0 | 0 | 0 | 0 | -g_{3} | g_{7} | 0 | 0 | -g_{10} | 0 | g_{15} | -g_{16} | 0 | 0 | 0 | 0 | 0 |
(0, 0, -1, -1, -1, 0, 0, 0) | -e_{3}+e_{6} | g_{-18} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-33} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-29} | 0 | 0 | 0 | 0 | g_{-27} | 0 | 0 | -g_{-24} | 0 | 0 | 0 | g_{-23} | 0 | 0 | -g_{-18} | g_{-18} | 0 | g_{-18} | -g_{-18} | 0 | 0 | 0 | 0 | g_{-12} | 0 | -g_{-11} | 0 | 0 | 0 | 0 | 0 | g_{-5} | -g_{-3} | 0 | 0 | 0 | 0 | 0 | -h_{5}-h_{4}-h_{3} | 0 | 0 | 0 | 0 | -g_{2} | g_{6} | 0 | 0 | -g_{9} | 0 | g_{14} | 0 | 0 | 0 | g_{21} | 0 | 0 | 0 |
(0, -1, -1, -1, 0, 0, 0, 0) | -e_{2}+e_{5} | g_{-17} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-35} | 0 | 0 | 0 | 0 | 0 | -g_{-32} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-28} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-23} | 0 | 0 | 0 | g_{-22} | -g_{-17} | g_{-17} | 0 | g_{-17} | -g_{-17} | 0 | 0 | 0 | 0 | g_{-11} | 0 | -g_{-10} | 0 | 0 | 0 | 0 | 0 | g_{-4} | -g_{-2} | 0 | 0 | 0 | 0 | 0 | -h_{4}-h_{3}-h_{2} | 0 | 0 | 0 | 0 | -g_{1} | g_{5} | 0 | 0 | 0 | 0 | g_{13} | 0 | 0 | 0 | g_{20} | 0 | 0 | g_{26} | 0 |
(-1, -1, -1, 0, 0, 0, 0, 0) | -e_{1}+e_{4} | g_{-16} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-36} | 0 | 0 | 0 | 0 | -g_{-34} | 0 | 0 | 0 | 0 | 0 | -g_{-31} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-27} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-22} | 0 | 0 | 0 | g_{-16} | 0 | g_{-16} | -g_{-16} | 0 | 0 | 0 | 0 | g_{-10} | 0 | -g_{-9} | 0 | 0 | 0 | 0 | 0 | g_{-3} | -g_{-1} | 0 | 0 | 0 | 0 | 0 | -h_{3}-h_{2}-h_{1} | 0 | 0 | 0 | 0 | 0 | g_{4} | 0 | 0 | 0 | 0 | g_{12} | 0 | 0 | 0 | g_{19} | 0 | 0 | g_{25} | 0 | g_{30} |
(0, 0, 0, 0, 0, 0, -1, -1) | -e_{7}+e_{9} | g_{-15} | 0 | 0 | 0 | 0 | 0 | g_{-36} | 0 | 0 | g_{-35} | 0 | 0 | 0 | g_{-33} | 0 | 0 | 0 | 0 | g_{-30} | 0 | 0 | 0 | 0 | 0 | g_{-26} | 0 | 0 | 0 | 0 | 0 | 0 | g_{-21} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-15} | g_{-15} | g_{-15} | 0 | 0 | 0 | 0 | 0 | 0 | g_{-8} | -g_{-7} | 0 | 0 | 0 | 0 | 0 | 0 | -h_{8}-h_{7} | 0 | 0 | 0 | 0 | 0 | -g_{6} | 0 | 0 | 0 | 0 | -g_{13} | 0 | 0 | 0 | -g_{19} | 0 | 0 | -g_{24} | 0 | -g_{28} | -g_{31} |
(0, 0, 0, 0, 0, -1, -1, 0) | -e_{6}+e_{8} | g_{-14} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-34} | 0 | 0 | 0 | g_{-32} | 0 | 0 | 0 | 0 | g_{-29} | 0 | 0 | 0 | 0 | 0 | g_{-25} | 0 | 0 | 0 | -g_{-21} | 0 | 0 | g_{-20} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-14} | g_{-14} | g_{-14} | -g_{-14} | 0 | 0 | 0 | 0 | 0 | g_{-7} | -g_{-6} | 0 | 0 | 0 | 0 | 0 | 0 | -h_{7}-h_{6} | 0 | 0 | 0 | 0 | 0 | -g_{5} | g_{8} | 0 | 0 | 0 | -g_{12} | 0 | 0 | 0 | -g_{18} | 0 | 0 | -g_{23} | 0 | -g_{27} | 0 | 0 |
(0, 0, 0, 0, -1, -1, 0, 0) | -e_{5}+e_{7} | g_{-13} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-31} | 0 | 0 | 0 | 0 | g_{-28} | 0 | -g_{-26} | 0 | 0 | 0 | g_{-24} | 0 | 0 | 0 | -g_{-20} | 0 | 0 | g_{-19} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-13} | g_{-13} | g_{-13} | -g_{-13} | 0 | 0 | 0 | 0 | 0 | g_{-6} | -g_{-5} | 0 | 0 | 0 | 0 | 0 | 0 | -h_{6}-h_{5} | 0 | 0 | 0 | 0 | 0 | -g_{4} | g_{7} | 0 | 0 | 0 | -g_{11} | 0 | g_{15} | 0 | -g_{17} | 0 | 0 | -g_{22} | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, -1, -1, 0, 0, 0) | -e_{4}+e_{6} | g_{-12} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-30} | 0 | 0 | 0 | 0 | g_{-27} | 0 | -g_{-25} | 0 | 0 | 0 | g_{-23} | 0 | 0 | 0 | -g_{-19} | 0 | 0 | g_{-18} | 0 | 0 | 0 | 0 | -g_{-12} | g_{-12} | g_{-12} | -g_{-12} | 0 | 0 | 0 | 0 | 0 | g_{-5} | -g_{-4} | 0 | 0 | 0 | 0 | 0 | 0 | -h_{5}-h_{4} | 0 | 0 | 0 | 0 | 0 | -g_{3} | g_{6} | 0 | 0 | 0 | -g_{10} | 0 | g_{14} | 0 | -g_{16} | 0 | 0 | g_{21} | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, -1, -1, 0, 0, 0, 0) | -e_{3}+e_{5} | g_{-11} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-33} | 0 | 0 | 0 | 0 | 0 | -g_{-29} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-24} | 0 | 0 | 0 | g_{-22} | 0 | 0 | 0 | -g_{-18} | 0 | 0 | g_{-17} | 0 | 0 | -g_{-11} | g_{-11} | g_{-11} | -g_{-11} | 0 | 0 | 0 | 0 | 0 | g_{-4} | -g_{-3} | 0 | 0 | 0 | 0 | 0 | 0 | -h_{4}-h_{3} | 0 | 0 | 0 | 0 | 0 | -g_{2} | g_{5} | 0 | 0 | 0 | -g_{9} | 0 | g_{13} | 0 | 0 | 0 | 0 | g_{20} | 0 | 0 | 0 | g_{26} | 0 | 0 | 0 |
(0, -1, -1, 0, 0, 0, 0, 0) | -e_{2}+e_{4} | g_{-10} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-35} | 0 | 0 | 0 | 0 | -g_{-32} | 0 | 0 | 0 | 0 | 0 | -g_{-28} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-23} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-17} | 0 | 0 | g_{-16} | -g_{-10} | g_{-10} | g_{-10} | -g_{-10} | 0 | 0 | 0 | 0 | 0 | g_{-3} | -g_{-2} | 0 | 0 | 0 | 0 | 0 | 0 | -h_{3}-h_{2} | 0 | 0 | 0 | 0 | 0 | -g_{1} | g_{4} | 0 | 0 | 0 | 0 | 0 | g_{12} | 0 | 0 | 0 | 0 | g_{19} | 0 | 0 | 0 | g_{25} | 0 | 0 | g_{30} | 0 |
(-1, -1, 0, 0, 0, 0, 0, 0) | -e_{1}+e_{3} | g_{-9} | 0 | 0 | 0 | -g_{-36} | 0 | 0 | 0 | -g_{-34} | 0 | 0 | 0 | 0 | -g_{-31} | 0 | 0 | 0 | 0 | 0 | -g_{-27} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-22} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-16} | 0 | 0 | g_{-9} | g_{-9} | -g_{-9} | 0 | 0 | 0 | 0 | 0 | g_{-2} | -g_{-1} | 0 | 0 | 0 | 0 | 0 | 0 | -h_{2}-h_{1} | 0 | 0 | 0 | 0 | 0 | 0 | g_{3} | 0 | 0 | 0 | 0 | 0 | g_{11} | 0 | 0 | 0 | 0 | g_{18} | 0 | 0 | 0 | g_{24} | 0 | 0 | g_{29} | 0 | g_{33} |
(0, 0, 0, 0, 0, 0, 0, -1) | -e_{8}+e_{9} | g_{-8} | 0 | 0 | g_{-36} | 0 | g_{-35} | 0 | 0 | g_{-33} | 0 | 0 | 0 | g_{-30} | 0 | 0 | 0 | 0 | g_{-26} | 0 | 0 | 0 | 0 | 0 | g_{-21} | 0 | 0 | 0 | 0 | 0 | 0 | g_{-15} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-8} | 2g_{-8} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -h_{8} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{7} | 0 | 0 | 0 | 0 | 0 | -g_{14} | 0 | 0 | 0 | 0 | -g_{20} | 0 | 0 | 0 | -g_{25} | 0 | 0 | -g_{29} | 0 | -g_{32} | -g_{34} |
(0, 0, 0, 0, 0, 0, -1, 0) | -e_{7}+e_{8} | g_{-7} | 0 | 0 | 0 | 0 | 0 | g_{-34} | 0 | 0 | g_{-32} | 0 | 0 | 0 | g_{-29} | 0 | 0 | 0 | 0 | g_{-25} | 0 | 0 | 0 | 0 | 0 | g_{-20} | 0 | 0 | 0 | 0 | -g_{-15} | 0 | g_{-14} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-7} | 2g_{-7} | -g_{-7} | 0 | 0 | 0 | 0 | 0 | 0 | -h_{7} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{6} | g_{8} | 0 | 0 | 0 | 0 | -g_{13} | 0 | 0 | 0 | 0 | -g_{19} | 0 | 0 | 0 | -g_{24} | 0 | 0 | -g_{28} | 0 | -g_{31} | 0 | 0 |
(0, 0, 0, 0, 0, -1, 0, 0) | -e_{6}+e_{7} | g_{-6} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-31} | 0 | 0 | 0 | g_{-28} | 0 | 0 | 0 | 0 | g_{-24} | 0 | 0 | -g_{-21} | 0 | 0 | g_{-19} | 0 | 0 | 0 | 0 | -g_{-14} | 0 | g_{-13} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-6} | 2g_{-6} | -g_{-6} | 0 | 0 | 0 | 0 | 0 | 0 | -h_{6} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{5} | g_{7} | 0 | 0 | 0 | 0 | -g_{12} | 0 | g_{15} | 0 | 0 | -g_{18} | 0 | 0 | 0 | -g_{23} | 0 | 0 | -g_{27} | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, -1, 0, 0, 0) | -e_{5}+e_{6} | g_{-5} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-27} | -g_{-26} | 0 | 0 | 0 | g_{-23} | 0 | 0 | -g_{-20} | 0 | 0 | g_{-18} | 0 | 0 | 0 | 0 | -g_{-13} | 0 | g_{-12} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-5} | 2g_{-5} | -g_{-5} | 0 | 0 | 0 | 0 | 0 | 0 | -h_{5} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{4} | g_{6} | 0 | 0 | 0 | 0 | -g_{11} | 0 | g_{14} | 0 | 0 | -g_{17} | 0 | 0 | g_{21} | -g_{22} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, -1, 0, 0, 0, 0) | -e_{4}+e_{5} | g_{-4} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-30} | 0 | 0 | 0 | 0 | 0 | -g_{-25} | 0 | 0 | 0 | g_{-22} | 0 | 0 | -g_{-19} | 0 | 0 | g_{-17} | 0 | 0 | 0 | 0 | -g_{-12} | 0 | g_{-11} | 0 | 0 | 0 | 0 | -g_{-4} | 2g_{-4} | -g_{-4} | 0 | 0 | 0 | 0 | 0 | 0 | -h_{4} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{3} | g_{5} | 0 | 0 | 0 | 0 | -g_{10} | 0 | g_{13} | 0 | 0 | -g_{16} | 0 | 0 | g_{20} | 0 | 0 | 0 | 0 | g_{26} | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, -1, 0, 0, 0, 0, 0) | -e_{3}+e_{4} | g_{-3} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-33} | 0 | 0 | 0 | 0 | -g_{-29} | 0 | 0 | 0 | 0 | 0 | -g_{-24} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-18} | 0 | 0 | g_{-16} | 0 | 0 | 0 | 0 | -g_{-11} | 0 | g_{-10} | 0 | 0 | -g_{-3} | 2g_{-3} | -g_{-3} | 0 | 0 | 0 | 0 | 0 | 0 | -h_{3} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{2} | g_{4} | 0 | 0 | 0 | 0 | -g_{9} | 0 | g_{12} | 0 | 0 | 0 | 0 | 0 | g_{19} | 0 | 0 | 0 | 0 | g_{25} | 0 | 0 | 0 | g_{30} | 0 | 0 | 0 |
(0, -1, 0, 0, 0, 0, 0, 0) | -e_{2}+e_{3} | g_{-2} | 0 | 0 | 0 | -g_{-35} | 0 | 0 | 0 | -g_{-32} | 0 | 0 | 0 | 0 | -g_{-28} | 0 | 0 | 0 | 0 | 0 | -g_{-23} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-17} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-10} | 0 | g_{-9} | -g_{-2} | 2g_{-2} | -g_{-2} | 0 | 0 | 0 | 0 | 0 | 0 | -h_{2} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{1} | g_{3} | 0 | 0 | 0 | 0 | 0 | 0 | g_{11} | 0 | 0 | 0 | 0 | 0 | g_{18} | 0 | 0 | 0 | 0 | g_{24} | 0 | 0 | 0 | g_{29} | 0 | 0 | g_{33} | 0 |
(-1, 0, 0, 0, 0, 0, 0, 0) | -e_{1}+e_{2} | g_{-1} | 0 | -g_{-36} | 0 | 0 | -g_{-34} | 0 | 0 | 0 | -g_{-31} | 0 | 0 | 0 | 0 | -g_{-27} | 0 | 0 | 0 | 0 | 0 | -g_{-22} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-16} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-9} | 0 | 2g_{-1} | -g_{-1} | 0 | 0 | 0 | 0 | 0 | 0 | -h_{1} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{2} | 0 | 0 | 0 | 0 | 0 | 0 | g_{10} | 0 | 0 | 0 | 0 | 0 | g_{17} | 0 | 0 | 0 | 0 | g_{23} | 0 | 0 | 0 | g_{28} | 0 | 0 | g_{32} | 0 | g_{35} |
(0, 0, 0, 0, 0, 0, 0, 0) | 0 | h_{1} | -g_{-36} | g_{-35} | -g_{-34} | 0 | g_{-32} | -g_{-31} | 0 | 0 | g_{-28} | -g_{-27} | 0 | 0 | 0 | g_{-23} | -g_{-22} | 0 | 0 | 0 | 0 | g_{-17} | -g_{-16} | 0 | 0 | 0 | 0 | 0 | g_{-10} | -g_{-9} | 0 | 0 | 0 | 0 | 0 | 0 | g_{-2} | -2g_{-1} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2g_{1} | -g_{2} | 0 | 0 | 0 | 0 | 0 | 0 | g_{9} | -g_{10} | 0 | 0 | 0 | 0 | 0 | g_{16} | -g_{17} | 0 | 0 | 0 | 0 | g_{22} | -g_{23} | 0 | 0 | 0 | g_{27} | -g_{28} | 0 | 0 | g_{31} | -g_{32} | 0 | g_{34} | -g_{35} | g_{36} |
(0, 0, 0, 0, 0, 0, 0, 0) | 0 | h_{2} | 0 | -g_{-35} | 0 | g_{-33} | -g_{-32} | 0 | 0 | g_{-29} | -g_{-28} | 0 | 0 | 0 | g_{-24} | -g_{-23} | 0 | 0 | 0 | 0 | g_{-18} | -g_{-17} | 0 | 0 | 0 | 0 | 0 | g_{-11} | -g_{-10} | -g_{-9} | 0 | 0 | 0 | 0 | 0 | g_{-3} | -2g_{-2} | g_{-1} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{1} | 2g_{2} | -g_{3} | 0 | 0 | 0 | 0 | 0 | g_{9} | g_{10} | -g_{11} | 0 | 0 | 0 | 0 | 0 | g_{17} | -g_{18} | 0 | 0 | 0 | 0 | g_{23} | -g_{24} | 0 | 0 | 0 | g_{28} | -g_{29} | 0 | 0 | g_{32} | -g_{33} | 0 | g_{35} | 0 |
(0, 0, 0, 0, 0, 0, 0, 0) | 0 | h_{3} | 0 | 0 | 0 | -g_{-33} | 0 | 0 | g_{-30} | -g_{-29} | 0 | 0 | 0 | g_{-25} | -g_{-24} | 0 | 0 | 0 | 0 | g_{-19} | -g_{-18} | 0 | -g_{-16} | 0 | 0 | 0 | g_{-12} | -g_{-11} | -g_{-10} | g_{-9} | 0 | 0 | 0 | 0 | g_{-4} | -2g_{-3} | g_{-2} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{2} | 2g_{3} | -g_{4} | 0 | 0 | 0 | 0 | -g_{9} | g_{10} | g_{11} | -g_{12} | 0 | 0 | 0 | g_{16} | 0 | g_{18} | -g_{19} | 0 | 0 | 0 | 0 | g_{24} | -g_{25} | 0 | 0 | 0 | g_{29} | -g_{30} | 0 | 0 | g_{33} | 0 | 0 | 0 |
(0, 0, 0, 0, 0, 0, 0, 0) | 0 | h_{4} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-30} | 0 | 0 | 0 | g_{-26} | -g_{-25} | 0 | 0 | -g_{-22} | 0 | g_{-20} | -g_{-19} | 0 | -g_{-17} | g_{-16} | 0 | 0 | g_{-13} | -g_{-12} | -g_{-11} | g_{-10} | 0 | 0 | 0 | 0 | g_{-5} | -2g_{-4} | g_{-3} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{3} | 2g_{4} | -g_{5} | 0 | 0 | 0 | 0 | -g_{10} | g_{11} | g_{12} | -g_{13} | 0 | 0 | -g_{16} | g_{17} | 0 | g_{19} | -g_{20} | 0 | g_{22} | 0 | 0 | g_{25} | -g_{26} | 0 | 0 | 0 | g_{30} | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, 0, 0, 0, 0) | 0 | h_{5} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-27} | -g_{-26} | 0 | 0 | -g_{-23} | g_{-22} | g_{-21} | -g_{-20} | 0 | -g_{-18} | g_{-17} | 0 | 0 | g_{-14} | -g_{-13} | -g_{-12} | g_{-11} | 0 | 0 | 0 | 0 | g_{-6} | -2g_{-5} | g_{-4} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{4} | 2g_{5} | -g_{6} | 0 | 0 | 0 | 0 | -g_{11} | g_{12} | g_{13} | -g_{14} | 0 | 0 | -g_{17} | g_{18} | 0 | g_{20} | -g_{21} | -g_{22} | g_{23} | 0 | 0 | g_{26} | g_{27} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, 0, 0, 0, 0) | 0 | h_{6} | 0 | 0 | 0 | 0 | 0 | -g_{-31} | 0 | 0 | -g_{-28} | g_{-27} | 0 | 0 | -g_{-24} | g_{-23} | 0 | -g_{-21} | 0 | -g_{-19} | g_{-18} | 0 | 0 | g_{-15} | -g_{-14} | -g_{-13} | g_{-12} | 0 | 0 | 0 | 0 | g_{-7} | -2g_{-6} | g_{-5} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{5} | 2g_{6} | -g_{7} | 0 | 0 | 0 | 0 | -g_{12} | g_{13} | g_{14} | -g_{15} | 0 | 0 | -g_{18} | g_{19} | 0 | g_{21} | 0 | -g_{23} | g_{24} | 0 | 0 | -g_{27} | g_{28} | 0 | 0 | g_{31} | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, 0, 0, 0, 0) | 0 | h_{7} | 0 | 0 | -g_{-34} | 0 | -g_{-32} | g_{-31} | 0 | -g_{-29} | g_{-28} | 0 | 0 | -g_{-25} | g_{-24} | 0 | 0 | 0 | -g_{-20} | g_{-19} | 0 | 0 | 0 | -g_{-15} | -g_{-14} | g_{-13} | 0 | 0 | 0 | 0 | g_{-8} | -2g_{-7} | g_{-6} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{6} | 2g_{7} | -g_{8} | 0 | 0 | 0 | 0 | -g_{13} | g_{14} | g_{15} | 0 | 0 | 0 | -g_{19} | g_{20} | 0 | 0 | 0 | -g_{24} | g_{25} | 0 | 0 | -g_{28} | g_{29} | 0 | -g_{31} | g_{32} | 0 | g_{34} | 0 | 0 |
(0, 0, 0, 0, 0, 0, 0, 0) | 0 | h_{8} | -g_{-36} | -g_{-35} | g_{-34} | -g_{-33} | g_{-32} | 0 | -g_{-30} | g_{-29} | 0 | 0 | -g_{-26} | g_{-25} | 0 | 0 | 0 | -g_{-21} | g_{-20} | 0 | 0 | 0 | 0 | -g_{-15} | g_{-14} | 0 | 0 | 0 | 0 | 0 | -2g_{-8} | g_{-7} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{7} | 2g_{8} | 0 | 0 | 0 | 0 | 0 | -g_{14} | g_{15} | 0 | 0 | 0 | 0 | -g_{20} | g_{21} | 0 | 0 | 0 | -g_{25} | g_{26} | 0 | 0 | -g_{29} | g_{30} | 0 | -g_{32} | g_{33} | -g_{34} | g_{35} | g_{36} |
(1, 0, 0, 0, 0, 0, 0, 0) | e_{1}-e_{2} | g_{1} | -g_{-35} | 0 | -g_{-32} | 0 | 0 | -g_{-28} | 0 | 0 | 0 | -g_{-23} | 0 | 0 | 0 | 0 | -g_{-17} | 0 | 0 | 0 | 0 | 0 | -g_{-10} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-2} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | h_{1} | -2g_{1} | g_{1} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{9} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{16} | 0 | 0 | 0 | 0 | 0 | 0 | g_{22} | 0 | 0 | 0 | 0 | 0 | g_{27} | 0 | 0 | 0 | 0 | g_{31} | 0 | 0 | 0 | g_{34} | 0 | 0 | g_{36} | 0 |
(0, 1, 0, 0, 0, 0, 0, 0) | e_{2}-e_{3} | g_{2} | 0 | -g_{-33} | 0 | 0 | -g_{-29} | 0 | 0 | 0 | -g_{-24} | 0 | 0 | 0 | 0 | -g_{-18} | 0 | 0 | 0 | 0 | 0 | -g_{-11} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-3} | g_{-1} | 0 | 0 | 0 | 0 | 0 | 0 | h_{2} | 0 | g_{2} | -2g_{2} | g_{2} | 0 | 0 | 0 | 0 | 0 | -g_{9} | 0 | g_{10} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{17} | 0 | 0 | 0 | 0 | 0 | 0 | g_{23} | 0 | 0 | 0 | 0 | 0 | g_{28} | 0 | 0 | 0 | 0 | g_{32} | 0 | 0 | 0 | g_{35} | 0 | 0 | 0 |
(0, 0, 1, 0, 0, 0, 0, 0) | e_{3}-e_{4} | g_{3} | 0 | 0 | 0 | -g_{-30} | 0 | 0 | 0 | -g_{-25} | 0 | 0 | 0 | 0 | -g_{-19} | 0 | 0 | 0 | 0 | 0 | -g_{-12} | 0 | g_{-9} | 0 | 0 | 0 | 0 | -g_{-4} | g_{-2} | 0 | 0 | 0 | 0 | 0 | 0 | h_{3} | 0 | 0 | 0 | g_{3} | -2g_{3} | g_{3} | 0 | 0 | 0 | 0 | 0 | -g_{10} | 0 | g_{11} | 0 | 0 | 0 | 0 | -g_{16} | 0 | 0 | g_{18} | 0 | 0 | 0 | 0 | 0 | 0 | g_{24} | 0 | 0 | 0 | 0 | 0 | g_{29} | 0 | 0 | 0 | 0 | g_{33} | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 1, 0, 0, 0, 0) | e_{4}-e_{5} | g_{4} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-26} | 0 | 0 | 0 | 0 | -g_{-20} | 0 | 0 | g_{-16} | 0 | 0 | -g_{-13} | 0 | g_{-10} | 0 | 0 | 0 | 0 | -g_{-5} | g_{-3} | 0 | 0 | 0 | 0 | 0 | 0 | h_{4} | 0 | 0 | 0 | 0 | 0 | g_{4} | -2g_{4} | g_{4} | 0 | 0 | 0 | 0 | 0 | -g_{11} | 0 | g_{12} | 0 | 0 | 0 | 0 | -g_{17} | 0 | 0 | g_{19} | 0 | 0 | -g_{22} | 0 | 0 | 0 | g_{25} | 0 | 0 | 0 | 0 | 0 | g_{30} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, 1, 0, 0, 0) | e_{5}-e_{6} | g_{5} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-22} | -g_{-21} | 0 | 0 | g_{-17} | 0 | 0 | -g_{-14} | 0 | g_{-11} | 0 | 0 | 0 | 0 | -g_{-6} | g_{-4} | 0 | 0 | 0 | 0 | 0 | 0 | h_{5} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{5} | -2g_{5} | g_{5} | 0 | 0 | 0 | 0 | 0 | -g_{12} | 0 | g_{13} | 0 | 0 | 0 | 0 | -g_{18} | 0 | 0 | g_{20} | 0 | 0 | -g_{23} | 0 | 0 | 0 | g_{26} | -g_{27} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, 0, 1, 0, 0) | e_{6}-e_{7} | g_{6} | 0 | 0 | 0 | 0 | 0 | g_{-27} | 0 | 0 | g_{-23} | 0 | 0 | 0 | g_{-18} | 0 | 0 | -g_{-15} | 0 | g_{-12} | 0 | 0 | 0 | 0 | -g_{-7} | g_{-5} | 0 | 0 | 0 | 0 | 0 | 0 | h_{6} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{6} | -2g_{6} | g_{6} | 0 | 0 | 0 | 0 | 0 | -g_{13} | 0 | g_{14} | 0 | 0 | 0 | 0 | -g_{19} | 0 | 0 | g_{21} | 0 | 0 | -g_{24} | 0 | 0 | 0 | 0 | -g_{28} | 0 | 0 | 0 | -g_{31} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, 0, 0, 1, 0) | e_{7}-e_{8} | g_{7} | 0 | 0 | g_{-31} | 0 | g_{-28} | 0 | 0 | g_{-24} | 0 | 0 | 0 | g_{-19} | 0 | 0 | 0 | 0 | g_{-13} | 0 | 0 | 0 | 0 | -g_{-8} | g_{-6} | 0 | 0 | 0 | 0 | 0 | 0 | h_{7} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{7} | -2g_{7} | g_{7} | 0 | 0 | 0 | 0 | 0 | -g_{14} | 0 | g_{15} | 0 | 0 | 0 | 0 | -g_{20} | 0 | 0 | 0 | 0 | 0 | -g_{25} | 0 | 0 | 0 | 0 | -g_{29} | 0 | 0 | 0 | -g_{32} | 0 | 0 | -g_{34} | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, 0, 0, 0, 1) | e_{8}-e_{9} | g_{8} | g_{-34} | g_{-32} | 0 | g_{-29} | 0 | 0 | g_{-25} | 0 | 0 | 0 | g_{-20} | 0 | 0 | 0 | 0 | g_{-14} | 0 | 0 | 0 | 0 | 0 | g_{-7} | 0 | 0 | 0 | 0 | 0 | 0 | h_{8} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{8} | -2g_{8} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{15} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{21} | 0 | 0 | 0 | 0 | 0 | -g_{26} | 0 | 0 | 0 | 0 | -g_{30} | 0 | 0 | 0 | -g_{33} | 0 | 0 | -g_{35} | 0 | -g_{36} | 0 | 0 |
(1, 1, 0, 0, 0, 0, 0, 0) | e_{1}-e_{3} | g_{9} | -g_{-33} | 0 | -g_{-29} | 0 | 0 | -g_{-24} | 0 | 0 | 0 | -g_{-18} | 0 | 0 | 0 | 0 | -g_{-11} | 0 | 0 | 0 | 0 | 0 | -g_{-3} | 0 | 0 | 0 | 0 | 0 | 0 | h_{2}+h_{1} | 0 | 0 | 0 | 0 | 0 | 0 | g_{1} | -g_{2} | -g_{9} | -g_{9} | g_{9} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{16} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{22} | 0 | 0 | 0 | 0 | 0 | 0 | g_{27} | 0 | 0 | 0 | 0 | 0 | g_{31} | 0 | 0 | 0 | 0 | g_{34} | 0 | 0 | 0 | g_{36} | 0 | 0 | 0 |
(0, 1, 1, 0, 0, 0, 0, 0) | e_{2}-e_{4} | g_{10} | 0 | -g_{-30} | 0 | 0 | -g_{-25} | 0 | 0 | 0 | -g_{-19} | 0 | 0 | 0 | 0 | -g_{-12} | 0 | 0 | 0 | 0 | 0 | -g_{-4} | g_{-1} | 0 | 0 | 0 | 0 | 0 | h_{3}+h_{2} | 0 | 0 | 0 | 0 | 0 | 0 | g_{2} | -g_{3} | 0 | g_{10} | -g_{10} | -g_{10} | g_{10} | 0 | 0 | 0 | 0 | -g_{16} | 0 | 0 | g_{17} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{23} | 0 | 0 | 0 | 0 | 0 | 0 | g_{28} | 0 | 0 | 0 | 0 | 0 | g_{32} | 0 | 0 | 0 | 0 | g_{35} | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 1, 1, 0, 0, 0, 0) | e_{3}-e_{5} | g_{11} | 0 | 0 | 0 | -g_{-26} | 0 | 0 | 0 | -g_{-20} | 0 | 0 | 0 | 0 | -g_{-13} | 0 | g_{-9} | 0 | 0 | 0 | -g_{-5} | g_{-2} | 0 | 0 | 0 | 0 | 0 | h_{4}+h_{3} | 0 | 0 | 0 | 0 | 0 | 0 | g_{3} | -g_{4} | 0 | 0 | 0 | g_{11} | -g_{11} | -g_{11} | g_{11} | 0 | 0 | 0 | 0 | -g_{17} | 0 | 0 | g_{18} | 0 | 0 | 0 | -g_{22} | 0 | 0 | 0 | g_{24} | 0 | 0 | 0 | 0 | 0 | 0 | g_{29} | 0 | 0 | 0 | 0 | 0 | g_{33} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 1, 1, 0, 0, 0) | e_{4}-e_{6} | g_{12} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-21} | 0 | 0 | g_{-16} | 0 | -g_{-14} | 0 | g_{-10} | 0 | 0 | 0 | -g_{-6} | g_{-3} | 0 | 0 | 0 | 0 | 0 | h_{5}+h_{4} | 0 | 0 | 0 | 0 | 0 | 0 | g_{4} | -g_{5} | 0 | 0 | 0 | 0 | 0 | g_{12} | -g_{12} | -g_{12} | g_{12} | 0 | 0 | 0 | 0 | -g_{18} | 0 | 0 | g_{19} | 0 | 0 | 0 | -g_{23} | 0 | 0 | 0 | g_{25} | 0 | -g_{27} | 0 | 0 | 0 | 0 | g_{30} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, 1, 1, 0, 0) | e_{5}-e_{7} | g_{13} | 0 | 0 | 0 | 0 | 0 | g_{-22} | 0 | 0 | g_{-17} | 0 | -g_{-15} | 0 | g_{-11} | 0 | 0 | 0 | -g_{-7} | g_{-4} | 0 | 0 | 0 | 0 | 0 | h_{6}+h_{5} | 0 | 0 | 0 | 0 | 0 | 0 | g_{5} | -g_{6} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{13} | -g_{13} | -g_{13} | g_{13} | 0 | 0 | 0 | 0 | -g_{19} | 0 | 0 | g_{20} | 0 | 0 | 0 | -g_{24} | 0 | 0 | 0 | g_{26} | 0 | -g_{28} | 0 | 0 | 0 | 0 | -g_{31} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, 0, 1, 1, 0) | e_{6}-e_{8} | g_{14} | 0 | 0 | g_{-27} | 0 | g_{-23} | 0 | 0 | g_{-18} | 0 | 0 | 0 | g_{-12} | 0 | 0 | 0 | -g_{-8} | g_{-5} | 0 | 0 | 0 | 0 | 0 | h_{7}+h_{6} | 0 | 0 | 0 | 0 | 0 | 0 | g_{6} | -g_{7} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{14} | -g_{14} | -g_{14} | g_{14} | 0 | 0 | 0 | 0 | -g_{20} | 0 | 0 | g_{21} | 0 | 0 | 0 | -g_{25} | 0 | 0 | 0 | 0 | 0 | -g_{29} | 0 | 0 | 0 | 0 | -g_{32} | 0 | 0 | 0 | -g_{34} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, 0, 0, 1, 1) | e_{7}-e_{9} | g_{15} | g_{-31} | g_{-28} | 0 | g_{-24} | 0 | 0 | g_{-19} | 0 | 0 | 0 | g_{-13} | 0 | 0 | 0 | 0 | g_{-6} | 0 | 0 | 0 | 0 | 0 | h_{8}+h_{7} | 0 | 0 | 0 | 0 | 0 | 0 | g_{7} | -g_{8} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{15} | -g_{15} | -g_{15} | 0 | 0 | 0 | 0 | 0 | -g_{21} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{26} | 0 | 0 | 0 | 0 | 0 | -g_{30} | 0 | 0 | 0 | 0 | -g_{33} | 0 | 0 | 0 | -g_{35} | 0 | 0 | -g_{36} | 0 | 0 | 0 | 0 | 0 |
(1, 1, 1, 0, 0, 0, 0, 0) | e_{1}-e_{4} | g_{16} | -g_{-30} | 0 | -g_{-25} | 0 | 0 | -g_{-19} | 0 | 0 | 0 | -g_{-12} | 0 | 0 | 0 | 0 | -g_{-4} | 0 | 0 | 0 | 0 | 0 | h_{3}+h_{2}+h_{1} | 0 | 0 | 0 | 0 | 0 | g_{1} | -g_{3} | 0 | 0 | 0 | 0 | 0 | g_{9} | 0 | -g_{10} | -g_{16} | 0 | -g_{16} | g_{16} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{22} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{27} | 0 | 0 | 0 | 0 | 0 | 0 | g_{31} | 0 | 0 | 0 | 0 | 0 | g_{34} | 0 | 0 | 0 | 0 | g_{36} | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 1, 1, 1, 0, 0, 0, 0) | e_{2}-e_{5} | g_{17} | 0 | -g_{-26} | 0 | 0 | -g_{-20} | 0 | 0 | 0 | -g_{-13} | 0 | 0 | 0 | 0 | -g_{-5} | g_{-1} | 0 | 0 | 0 | 0 | h_{4}+h_{3}+h_{2} | 0 | 0 | 0 | 0 | 0 | g_{2} | -g_{4} | 0 | 0 | 0 | 0 | 0 | g_{10} | 0 | -g_{11} | 0 | g_{17} | -g_{17} | 0 | -g_{17} | g_{17} | 0 | 0 | 0 | -g_{22} | 0 | 0 | 0 | g_{23} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{28} | 0 | 0 | 0 | 0 | 0 | 0 | g_{32} | 0 | 0 | 0 | 0 | 0 | g_{35} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 1, 1, 1, 0, 0, 0) | e_{3}-e_{6} | g_{18} | 0 | 0 | 0 | -g_{-21} | 0 | 0 | 0 | -g_{-14} | 0 | g_{-9} | 0 | 0 | -g_{-6} | g_{-2} | 0 | 0 | 0 | 0 | h_{5}+h_{4}+h_{3} | 0 | 0 | 0 | 0 | 0 | g_{3} | -g_{5} | 0 | 0 | 0 | 0 | 0 | g_{11} | 0 | -g_{12} | 0 | 0 | 0 | g_{18} | -g_{18} | 0 | -g_{18} | g_{18} | 0 | 0 | 0 | -g_{23} | 0 | 0 | 0 | g_{24} | 0 | 0 | -g_{27} | 0 | 0 | 0 | 0 | g_{29} | 0 | 0 | 0 | 0 | 0 | 0 | g_{33} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 1, 1, 1, 0, 0) | e_{4}-e_{7} | g_{19} | 0 | 0 | 0 | 0 | 0 | g_{-16} | -g_{-15} | 0 | g_{-10} | 0 | 0 | -g_{-7} | g_{-3} | 0 | 0 | 0 | 0 | h_{6}+h_{5}+h_{4} | 0 | 0 | 0 | 0 | 0 | g_{4} | -g_{6} | 0 | 0 | 0 | 0 | 0 | g_{12} | 0 | -g_{13} | 0 | 0 | 0 | 0 | 0 | g_{19} | -g_{19} | 0 | -g_{19} | g_{19} | 0 | 0 | 0 | -g_{24} | 0 | 0 | 0 | g_{25} | 0 | 0 | -g_{28} | 0 | 0 | 0 | 0 | g_{30} | -g_{31} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, 1, 1, 1, 0) | e_{5}-e_{8} | g_{20} | 0 | 0 | g_{-22} | 0 | g_{-17} | 0 | 0 | g_{-11} | 0 | 0 | -g_{-8} | g_{-4} | 0 | 0 | 0 | 0 | h_{7}+h_{6}+h_{5} | 0 | 0 | 0 | 0 | 0 | g_{5} | -g_{7} | 0 | 0 | 0 | 0 | 0 | g_{13} | 0 | -g_{14} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{20} | -g_{20} | 0 | -g_{20} | g_{20} | 0 | 0 | 0 | -g_{25} | 0 | 0 | 0 | g_{26} | 0 | 0 | -g_{29} | 0 | 0 | 0 | 0 | 0 | -g_{32} | 0 | 0 | 0 | 0 | -g_{34} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, 0, 1, 1, 1) | e_{6}-e_{9} | g_{21} | g_{-27} | g_{-23} | 0 | g_{-18} | 0 | 0 | g_{-12} | 0 | 0 | 0 | g_{-5} | 0 | 0 | 0 | 0 | h_{8}+h_{7}+h_{6} | 0 | 0 | 0 | 0 | 0 | g_{6} | -g_{8} | 0 | 0 | 0 | 0 | 0 | g_{14} | 0 | -g_{15} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{21} | -g_{21} | 0 | -g_{21} | 0 | 0 | 0 | 0 | -g_{26} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{30} | 0 | 0 | 0 | 0 | 0 | -g_{33} | 0 | 0 | 0 | 0 | -g_{35} | 0 | 0 | 0 | -g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 1, 1, 0, 0, 0, 0) | e_{1}-e_{5} | g_{22} | -g_{-26} | 0 | -g_{-20} | 0 | 0 | -g_{-13} | 0 | 0 | 0 | -g_{-5} | 0 | 0 | 0 | 0 | h_{4}+h_{3}+h_{2}+h_{1} | 0 | 0 | 0 | 0 | g_{1} | -g_{4} | 0 | 0 | 0 | 0 | g_{9} | 0 | -g_{11} | 0 | 0 | 0 | 0 | g_{16} | 0 | 0 | -g_{17} | -g_{22} | 0 | 0 | -g_{22} | g_{22} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{27} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{31} | 0 | 0 | 0 | 0 | 0 | 0 | g_{34} | 0 | 0 | 0 | 0 | 0 | g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 1, 1, 1, 1, 0, 0, 0) | e_{2}-e_{6} | g_{23} | 0 | -g_{-21} | 0 | 0 | -g_{-14} | 0 | 0 | 0 | -g_{-6} | g_{-1} | 0 | 0 | 0 | h_{5}+h_{4}+h_{3}+h_{2} | 0 | 0 | 0 | 0 | g_{2} | -g_{5} | 0 | 0 | 0 | 0 | g_{10} | 0 | -g_{12} | 0 | 0 | 0 | 0 | g_{17} | 0 | 0 | -g_{18} | 0 | g_{23} | -g_{23} | 0 | 0 | -g_{23} | g_{23} | 0 | 0 | -g_{27} | 0 | 0 | 0 | 0 | g_{28} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{32} | 0 | 0 | 0 | 0 | 0 | 0 | g_{35} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 1, 1, 1, 1, 0, 0) | e_{3}-e_{7} | g_{24} | 0 | 0 | 0 | -g_{-15} | 0 | g_{-9} | 0 | -g_{-7} | g_{-2} | 0 | 0 | 0 | h_{6}+h_{5}+h_{4}+h_{3} | 0 | 0 | 0 | 0 | g_{3} | -g_{6} | 0 | 0 | 0 | 0 | g_{11} | 0 | -g_{13} | 0 | 0 | 0 | 0 | g_{18} | 0 | 0 | -g_{19} | 0 | 0 | 0 | g_{24} | -g_{24} | 0 | 0 | -g_{24} | g_{24} | 0 | 0 | -g_{28} | 0 | 0 | 0 | 0 | g_{29} | 0 | -g_{31} | 0 | 0 | 0 | 0 | 0 | g_{33} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 1, 1, 1, 1, 0) | e_{4}-e_{8} | g_{25} | 0 | 0 | g_{-16} | 0 | g_{-10} | 0 | -g_{-8} | g_{-3} | 0 | 0 | 0 | h_{7}+h_{6}+h_{5}+h_{4} | 0 | 0 | 0 | 0 | g_{4} | -g_{7} | 0 | 0 | 0 | 0 | g_{12} | 0 | -g_{14} | 0 | 0 | 0 | 0 | g_{19} | 0 | 0 | -g_{20} | 0 | 0 | 0 | 0 | 0 | g_{25} | -g_{25} | 0 | 0 | -g_{25} | g_{25} | 0 | 0 | -g_{29} | 0 | 0 | 0 | 0 | g_{30} | 0 | -g_{32} | 0 | 0 | 0 | 0 | 0 | -g_{34} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, 1, 1, 1, 1) | e_{5}-e_{9} | g_{26} | g_{-22} | g_{-17} | 0 | g_{-11} | 0 | 0 | g_{-4} | 0 | 0 | 0 | h_{8}+h_{7}+h_{6}+h_{5} | 0 | 0 | 0 | 0 | g_{5} | -g_{8} | 0 | 0 | 0 | 0 | g_{13} | 0 | -g_{15} | 0 | 0 | 0 | 0 | g_{20} | 0 | 0 | -g_{21} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{26} | -g_{26} | 0 | 0 | -g_{26} | 0 | 0 | 0 | -g_{30} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{33} | 0 | 0 | 0 | 0 | 0 | -g_{35} | 0 | 0 | 0 | 0 | -g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 1, 1, 1, 0, 0, 0) | e_{1}-e_{6} | g_{27} | -g_{-21} | 0 | -g_{-14} | 0 | 0 | -g_{-6} | 0 | 0 | 0 | h_{5}+h_{4}+h_{3}+h_{2}+h_{1} | 0 | 0 | 0 | g_{1} | -g_{5} | 0 | 0 | 0 | g_{9} | 0 | -g_{12} | 0 | 0 | 0 | g_{16} | 0 | 0 | -g_{18} | 0 | 0 | 0 | g_{22} | 0 | 0 | 0 | -g_{23} | -g_{27} | 0 | 0 | 0 | -g_{27} | g_{27} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{31} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{34} | 0 | 0 | 0 | 0 | 0 | 0 | g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 1, 1, 1, 1, 1, 0, 0) | e_{2}-e_{7} | g_{28} | 0 | -g_{-15} | 0 | 0 | -g_{-7} | g_{-1} | 0 | 0 | h_{6}+h_{5}+h_{4}+h_{3}+h_{2} | 0 | 0 | 0 | g_{2} | -g_{6} | 0 | 0 | 0 | g_{10} | 0 | -g_{13} | 0 | 0 | 0 | g_{17} | 0 | 0 | -g_{19} | 0 | 0 | 0 | g_{23} | 0 | 0 | 0 | -g_{24} | 0 | g_{28} | -g_{28} | 0 | 0 | 0 | -g_{28} | g_{28} | 0 | -g_{31} | 0 | 0 | 0 | 0 | 0 | g_{32} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{35} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 1, 1, 1, 1, 1, 0) | e_{3}-e_{8} | g_{29} | 0 | 0 | g_{-9} | -g_{-8} | g_{-2} | 0 | 0 | h_{7}+h_{6}+h_{5}+h_{4}+h_{3} | 0 | 0 | 0 | g_{3} | -g_{7} | 0 | 0 | 0 | g_{11} | 0 | -g_{14} | 0 | 0 | 0 | g_{18} | 0 | 0 | -g_{20} | 0 | 0 | 0 | g_{24} | 0 | 0 | 0 | -g_{25} | 0 | 0 | 0 | g_{29} | -g_{29} | 0 | 0 | 0 | -g_{29} | g_{29} | 0 | -g_{32} | 0 | 0 | 0 | 0 | 0 | g_{33} | -g_{34} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 1, 1, 1, 1, 1) | e_{4}-e_{9} | g_{30} | g_{-16} | g_{-10} | 0 | g_{-3} | 0 | 0 | h_{8}+h_{7}+h_{6}+h_{5}+h_{4} | 0 | 0 | 0 | g_{4} | -g_{8} | 0 | 0 | 0 | g_{12} | 0 | -g_{15} | 0 | 0 | 0 | g_{19} | 0 | 0 | -g_{21} | 0 | 0 | 0 | g_{25} | 0 | 0 | 0 | -g_{26} | 0 | 0 | 0 | 0 | 0 | g_{30} | -g_{30} | 0 | 0 | 0 | -g_{30} | 0 | 0 | -g_{33} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{35} | 0 | 0 | 0 | 0 | 0 | -g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 1, 1, 1, 1, 0, 0) | e_{1}-e_{7} | g_{31} | -g_{-15} | 0 | -g_{-7} | 0 | 0 | h_{6}+h_{5}+h_{4}+h_{3}+h_{2}+h_{1} | 0 | 0 | g_{1} | -g_{6} | 0 | 0 | g_{9} | 0 | -g_{13} | 0 | 0 | g_{16} | 0 | 0 | -g_{19} | 0 | 0 | g_{22} | 0 | 0 | 0 | -g_{24} | 0 | 0 | g_{27} | 0 | 0 | 0 | 0 | -g_{28} | -g_{31} | 0 | 0 | 0 | 0 | -g_{31} | g_{31} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{34} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 1, 1, 1, 1, 1, 1, 0) | e_{2}-e_{8} | g_{32} | 0 | -g_{-8} | g_{-1} | 0 | h_{7}+h_{6}+h_{5}+h_{4}+h_{3}+h_{2} | 0 | 0 | g_{2} | -g_{7} | 0 | 0 | g_{10} | 0 | -g_{14} | 0 | 0 | g_{17} | 0 | 0 | -g_{20} | 0 | 0 | g_{23} | 0 | 0 | 0 | -g_{25} | 0 | 0 | g_{28} | 0 | 0 | 0 | 0 | -g_{29} | 0 | g_{32} | -g_{32} | 0 | 0 | 0 | 0 | -g_{32} | g_{32} | -g_{34} | 0 | 0 | 0 | 0 | 0 | 0 | g_{35} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 1, 1, 1, 1, 1, 1) | e_{3}-e_{9} | g_{33} | g_{-9} | g_{-2} | 0 | h_{8}+h_{7}+h_{6}+h_{5}+h_{4}+h_{3} | 0 | 0 | g_{3} | -g_{8} | 0 | 0 | g_{11} | 0 | -g_{15} | 0 | 0 | g_{18} | 0 | 0 | -g_{21} | 0 | 0 | g_{24} | 0 | 0 | 0 | -g_{26} | 0 | 0 | g_{29} | 0 | 0 | 0 | 0 | -g_{30} | 0 | 0 | 0 | g_{33} | -g_{33} | 0 | 0 | 0 | 0 | -g_{33} | 0 | -g_{35} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 1, 1, 1, 1, 1, 0) | e_{1}-e_{8} | g_{34} | -g_{-8} | 0 | h_{7}+h_{6}+h_{5}+h_{4}+h_{3}+h_{2}+h_{1} | 0 | g_{1} | -g_{7} | 0 | g_{9} | 0 | -g_{14} | 0 | g_{16} | 0 | 0 | -g_{20} | 0 | g_{22} | 0 | 0 | 0 | -g_{25} | 0 | g_{27} | 0 | 0 | 0 | 0 | -g_{29} | 0 | g_{31} | 0 | 0 | 0 | 0 | 0 | -g_{32} | -g_{34} | 0 | 0 | 0 | 0 | 0 | -g_{34} | g_{34} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 1, 1, 1, 1, 1, 1, 1) | e_{2}-e_{9} | g_{35} | g_{-1} | h_{8}+h_{7}+h_{6}+h_{5}+h_{4}+h_{3}+h_{2} | 0 | g_{2} | -g_{8} | 0 | g_{10} | 0 | -g_{15} | 0 | g_{17} | 0 | 0 | -g_{21} | 0 | g_{23} | 0 | 0 | 0 | -g_{26} | 0 | g_{28} | 0 | 0 | 0 | 0 | -g_{30} | 0 | g_{32} | 0 | 0 | 0 | 0 | 0 | -g_{33} | 0 | g_{35} | -g_{35} | 0 | 0 | 0 | 0 | 0 | -g_{35} | -g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 1, 1, 1, 1, 1, 1) | e_{1}-e_{9} | g_{36} | h_{8}+h_{7}+h_{6}+h_{5}+h_{4}+h_{3}+h_{2}+h_{1} | g_{1} | -g_{8} | g_{9} | 0 | -g_{15} | g_{16} | 0 | 0 | -g_{21} | g_{22} | 0 | 0 | 0 | -g_{26} | g_{27} | 0 | 0 | 0 | 0 | -g_{30} | g_{31} | 0 | 0 | 0 | 0 | 0 | -g_{33} | g_{34} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{35} | -g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{36} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
We define the symmetric Cartan matrix (8/9, 7/9, 2/3, 5/9, 4/9, 1/3, 2/9, 1/9) | = | \(\displaystyle 8/9\varepsilon_{1}-1/9\varepsilon_{2}-1/9\varepsilon_{3}-1/9\varepsilon_{4}-1/9\varepsilon_{5}-1/9\varepsilon_{6}-1/9\varepsilon_{7}-1/9\varepsilon_{8}-1/9\varepsilon_{9}\) |
(7/9, 14/9, 4/3, 10/9, 8/9, 2/3, 4/9, 2/9) | = | \(\displaystyle 7/9\varepsilon_{1}+7/9\varepsilon_{2}-2/9\varepsilon_{3}-2/9\varepsilon_{4}-2/9\varepsilon_{5}-2/9\varepsilon_{6}-2/9\varepsilon_{7}-2/9\varepsilon_{8}-2/9\varepsilon_{9}\) |
(2/3, 4/3, 2, 5/3, 4/3, 1, 2/3, 1/3) | = | \(\displaystyle 2/3\varepsilon_{1}+2/3\varepsilon_{2}+2/3\varepsilon_{3}-1/3\varepsilon_{4}-1/3\varepsilon_{5}-1/3\varepsilon_{6}-1/3\varepsilon_{7}-1/3\varepsilon_{8}-1/3\varepsilon_{9}\) |
(5/9, 10/9, 5/3, 20/9, 16/9, 4/3, 8/9, 4/9) | = | \(\displaystyle 5/9\varepsilon_{1}+5/9\varepsilon_{2}+5/9\varepsilon_{3}+5/9\varepsilon_{4}-4/9\varepsilon_{5}-4/9\varepsilon_{6}-4/9\varepsilon_{7}-4/9\varepsilon_{8}-4/9\varepsilon_{9}\) |
(4/9, 8/9, 4/3, 16/9, 20/9, 5/3, 10/9, 5/9) | = | \(\displaystyle 4/9\varepsilon_{1}+4/9\varepsilon_{2}+4/9\varepsilon_{3}+4/9\varepsilon_{4}+4/9\varepsilon_{5}-5/9\varepsilon_{6}-5/9\varepsilon_{7}-5/9\varepsilon_{8}-5/9\varepsilon_{9}\) |
(1/3, 2/3, 1, 4/3, 5/3, 2, 4/3, 2/3) | = | \(\displaystyle 1/3\varepsilon_{1}+1/3\varepsilon_{2}+1/3\varepsilon_{3}+1/3\varepsilon_{4}+1/3\varepsilon_{5}+1/3\varepsilon_{6}-2/3\varepsilon_{7}-2/3\varepsilon_{8}-2/3\varepsilon_{9}\) |
(2/9, 4/9, 2/3, 8/9, 10/9, 4/3, 14/9, 7/9) | = | \(\displaystyle 2/9\varepsilon_{1}+2/9\varepsilon_{2}+2/9\varepsilon_{3}+2/9\varepsilon_{4}+2/9\varepsilon_{5}+2/9\varepsilon_{6}+2/9\varepsilon_{7}-7/9\varepsilon_{8}-7/9\varepsilon_{9}\) |
(1/9, 2/9, 1/3, 4/9, 5/9, 2/3, 7/9, 8/9) | = | \(\displaystyle 1/9\varepsilon_{1}+1/9\varepsilon_{2}+1/9\varepsilon_{3}+1/9\varepsilon_{4}+1/9\varepsilon_{5}+1/9\varepsilon_{6}+1/9\varepsilon_{7}+1/9\varepsilon_{8}-8/9\varepsilon_{9}\) |